
 
 
 
 

CHAPTER 11 Object Oriented 
  Industrial Programming 
 
 
This chapter describes two different interpretations of the term “Object Oriented Programming”, how one 
interpretation is a subset of the other, and how the subset provides many of the benefits of object-based 
programming without the complexity.  This chapter goes on to provide examples of plant objects, how those 
objects are used in a control Program, and how this programming technique is a natural and intuitive way to control 
plant and equipment objects.   

Also, this chapter provides some history on the evolution from traditional PLC programming to object-based 
programming, introduces new techniques for mapping I/O and configuring objects in an object-based environment, 
describes best-practices for PLC design, and shows how designs can be perfected before being deployed to the field 
using system-level simulation.   

The lab for this chapter is exploring and simulating several completed discrete, batch, and continuous OOIP designs; 
and building your own OOIP design.  

 

Chapter 11: Object Oriented Industrial Programming 

When asked the meaning of 
Object Oriented 
Programming, the response 
tends to be very different 
between members of the 
Industrial Controls 
community (OT) versus 
members of the Computer 
Science community (IT).  To 
differentiate the two in this 
book, we will refer to the 
industrial controls 
interpretation as Object 
Oriented Industrial 
Programming (OOIP) and 
define them each as follows:   

Object Oriented Programming uses the full suite of OOP techniques, is primarily text based, and is primarily the 
domain of highly educated computer scientists.  Object Oriented Industrial Programming only utilizes 
Encapsulation, Composition, and Abstraction, uses these to build systems from self-contained reusable Function 
Blocks, is primarily graphics-based, and is usable by controls engineers and plant technicians with minimal training. 
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Industrial controls software engineering has unique requirements for high reliability and for ease of use by a broad 
spectrum of users.  Those are the reasons why graphical languages have been the mainstay of industrial controls 
programming and industrial controls engineers tend to wait for the latest trends in computer science to mature 
before adoption (such as symbolic addressing and data structures which both matured for 20 years before entering 
the industrial controls mainstream). 

 Object Oriented Programming (OOP) began to be used by computer scientists in the 1990s but has been slow to be 
adopted into the Industrial Controls world due to its complexity and the lack of a supporting graphical language 
environment.  Fortunately, tool vendors like CODESYS are beginning to address those issues. 

To benefit from Object Oriented Industrial Programming, controls programmers need only master three OOP 
concepts: Encapsulation, Composition, and Abstraction.  These are all covered in detail in this and the POUs 
chapters.  

OOIP provides the benefits of OOP but in a way that is familiar to industrial programmers and is maintainable by 
industrial programmers.  It is the best of both worlds: the productivity of OOP with the simplicity and reliability of 
traditional PLC programming.   

Object Oriented Programming (OOP) works well for the libraries created by highly trained computer scientists, such 
as the libraries created by the programmers at CODESYS.  These libraries can then be used by controls engineers 
who don’t need to know or understand complexities contained in the library.   

Visualization and Alarming also have their versions of OOIP which are discussed in their respective chapters later in 
this book.   
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Object Oriented 
Industrial 
Programming 
(OOIP) simplifies 
the design of your 
plant or equipment 
and makes it much 
easier and more 
likely to reuse 
control objects on 
future designs.  
Your plant or 
equipment is made 
of objects (motors, 
actuators, sensors, 
etc.); the control 
for your plant or 
equipment should 
be too!   

Just as a motor is a completely self-contained object which does not require assembly or modification, the control 
for that motor should be a self-contained object which does not require assembly or modification.  In software 
terms, this is known as Encapsulation.  Everything that is required to control a motor is encapsulated inside the 
motor control block.  Just drop it into the design and it works.  Just as the plant or equipment designer doesn’t need 
to be a motor design expert to specify and install a motor, the control designer doesn’t need to be a motor control 
expert to configure and use the motor control block.   

Reusing control blocks in your control code should be just as easy as reusing physical equipment in your plant.  
Physical equipment objects are specified, purchased, and installed – Control objects are placed, wired, and 
configured.  The thought process is the same, and both can, in fact, be done in parallel.  In the future, equipment 
manufacturers may well supply the OOIP control blocks for their equipment along with the physical equipment. 

In the early days of industrial automation, programming 
was flat.  We read the inputs, scaled the inputs, 
generated alarming on the inputs, performed the 
control algorithms to generate outputs, performed 
alarming on the outputs, scaled the outputs, and wrote 
the outputs using memory mapped I/O.  Later when 
Functions became available, we consolidated some of 
the duplicate code, but the process was still essentially 
flat. 
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When control software began to 
accommodate multiple tasks, industrial 
programmers adopted a centralized 
task-oriented approach.  This approach 
divided the operations up into separate 
tasks and then a sequence of centralized 
processes performed each separate 
operation on the tags in the program.  
The first task would read all the inputs, 
the next task would scale all the inputs, 
the next would perform alarming on the 
scaled points, and so on. 

A central characteristic of the task-
based approach is a number of lists and 
processes which must be maintained.  
For instance, in a task-based approach, 

the global variable list is added first, then functionality is bolted on in multiple layers growing out from that (such as 
scaling, alarming, filtering, logging, retaining, Visualization, etc., etc.).  Any modification or addition to the basic 
functionality requires modification or updating to all these layers.  Great effort and attention to detail is required to 
avoid missing a step in that process and introducing latent defects (which, of course, will not show up until the 
worst-possible moment).   

This centralized task-oriented approach was a big advancement over the flat approach, but it suffered from the 
need to modify each list or task when new functionality was added to the program.  In addition, task-oriented 
programming often made it difficult to see the flow of information and to understand the cause-and-effect 
relationships in the control code.  These drawbacks made programming more difficult to design and more 
complicated for plant technicians to maintain.   

OOIP turns the task-oriented process on its side as shown in this graphic.  Instead of the functionality being spread 
out amongst many tasks, the functionality is contained inside “Objects”.  A single object performs everything that is 
associated with an input (reading, scaling, filtering, alarming, persistence, etc.), and that single object is reused for 
each input.  To accommodate another input, simply add and configure another input object.  Same with output 
objects (such as motors and valves).   

In OOIP, since all the control is encapsulated inside the object, all that is necessary to add additional functionality is 
to add another self-contained block.  No separate lists, processes, global variables to update and maintain (or forget 
to update). 

The difference between task-based control and object-based control can be compared to different forms of 
governments.  Task-based control is analogous to a strong centralized government where new functionality must 
register with the Federal Bureau of Scaling, and the Federal Bureau of Alarms, and such.  Object-based is analogous 
to a decentralized government where new functionality is self-supporting and can largely take care of itself.   

Since industrial control plants consist of objects (such as: motors, conveyors, valves, and sensors), Object Oriented 
Programming is a natural choice for industrial controls – perhaps even more than the computer science 
programming for which OOP was originally created!  It may have been more natural for OOP to have been invented 
in the PLC world and then spread to the IT world, instead of the other way around.  
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The object behind Object Oriented Industrial 
Computing (OOIP) is to Encapsulate all the 
complexity into an object, and to Abstract the 
complexity into hierarchical levels where that 
complexity is necessary.  

Encapsulation allows objects to be created which 
contain all the functionality and data necessary to 
control its matching plant object.  The user does 
not need to know or understand the underlying 
implementation … they just use it!  A good 

analogy is a car engine.  The engine encapsulates pistons, valves, bearings, and a multitude of other objects and 
complex functionality.  The driver doesn’t need to know how an engine works – they only need to understand and 
interact with its interfaces: the start button and the accelerator pedal.  

Abstraction is where detail is grouped by level in a hierarchy so that the programmer only needs to deal with the 
relevant level of complexity at any one level of the design.  Composition is where Objects instantiate other Objects 
to build and logically partition large hierarchical systems.  Interfaces provide a standardized means of interacting 
with the next level in the hierarchy.  In the Mustang analogy from the previous chapter, the Mustang has an engine, 
which has a starter, which has an armature, which has copper wire, which is mined and refined at certain locations 
around the world as shown in this graphic.  Abstraction allows you to leave the nested complexity of the engine and 
the mining of its copper to others where that level of detail is appropriate for their level in the hierarchy.  You only 
need to know the Interfaces to engine – the ignition switch and the gas pedal.   

This graphic shows an example of 
Analog Input object (courtesy of 
Coherent Technologies).  This block 
encapsulates all the complexity of an 
Analog Input including scaling, clamping, 
filtering, override, rate-of-change 
alarming, and high/low alarming.  The 
programmer is only concerned with the 
configuration of the block (the inputs on 
the left ending in _CI) and connecting 
the outputs (Output_PO and 
SmoothedOutput_PO).  The 
programmer doesn’t need to 
understand or be concerned with the 
underlying complexity.  Just drop it in 
and use it … just like the engine in a car.  

An example of this Analog Input object 
in actual use appears in the lower left 
side of the design on the next page. 
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Control Objects can be designed to correspond to the objects in the plant in such a way that the control program 
begins to look similar to the physical plant design as shown in this graphic.  Notice the one-to-one correspondence 
between the physical objects and the Control Objects.   

The plant has four physical sensors for level, horsepower, temperature, and pressure – the control has four 
AnalogInput objects matching those four sensors.  The plant has two motors and two valves – the control has two 
motor objects (MotorRev and VFD) and two Valve objects (and a Human object, which is explained later).  

Due to this one-to-one correspondence, the plant design tool and the control design tool might one day be one-in-
the-same.  And suppliers of equipment might also provide the control block for that piece of equipment.  It will 
become just as easy to configure and use an equipment control block as it is to specify and purchase a physical 
piece of equipment. 

Notice this design has a “Human” object (lower-right corner).  In this case, the plant had a human operation 
(dumping a bag of chemical into the mixer).  In the control design, the human plant object is treated just like any 
other plant object.  In this case, when the recipe calls for the chemical to be added, the control toggles the 
ManualOperation_PI input, and the Human control object signals the operator through the HMI.  When the human 
is done, he/she responds to the HMI, which triggers the “Completed_PO” output which signals the control code to 
continue to the next step.    
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Again, the object of 
OOIP is to build 
completely self-
contained and self-
reliant objects which 
can be used without any 
additional programming 
(such as adding its 
variables to a global 
variable list, or adding 
its alarms to an alarm 
manager, or adding its 
persistent variables to 
the Persistence 
Manager, etc.).  Add the 
block into the design, 
connect its Program 

input and Program output pins, configure its parameters, and use it. 

The beauty of this approach of encapsulating all the functionality in an object, is that the object can then itself be 
used as a self-contained and self-reliant building block.  This is illustrated in this graphic where the mixer Program in 
the previous page is converted into a reusable object and then used to make a three-mixer plant.  If the individual 
mixing tanks are not identical, then configuration inputs are added to modify the behavior of instance to 
accommodate those differences. 

This is somewhat analogous to building a high-rise building.  The single mixing tank is the first floor.  It represents a 
firm foundation onto which to build the next floor – the three-mixer plant.  This then could become the firm 
foundation on which to build the next level of the plant.  In this way a plant of any complexity can be built just like a 
high-rise of any number of floors can be built as long as the floors below are properly designed.  Since each object is 
self-contained and self-reliant, the complexity remains constant as the Program grows, instead of growing 
exponentially as with traditional PLC programming. 

Let's use a motor controller as another example.  Since the motor controller is totally self-contained, we drop it into 
the design, wire up its “Run” Program input to whatever control tells the motor to run, configure its parameters 
(including mapping its physical I/O), and we are done.  Since the motor controller is totally self-contained and self-
reliant, it handles all its own alarming, restarting, and such.  In many cases, the level that uses the motor controller 
doesn’t even need to know if the motor actually started.  That level just tells the motor to Run and that’s it.  
Everything is handled internally.   

That is, unless the next level up needs to know if the motor is responding, as would be the case if the system had a 
redundant motor.  However, in that scenario, the additional functionality would be abstracted away into an 
additional layer of hierarchy.  A new RedundantMotor Function Block would be created which instantiates two or 
more Motor blocks along with the control logic to start a redundant motor if the current motor fails.  Thus, the level 
that instantiates the RedundantMotor doesn’t need to know or care what is happening inside the RedundantMotor 
level.  It just tells the RedundantMotor to run, and it is confident that the RedundantMotor will do what is 
necessary to keep a motor running.  The RedundantMotor is totally self-contained and totally self-reliant.  

 Are you beginning to see the beauty of Object Oriented Industrial Programming?  
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This graphic shows another example of an Object Oriented Industrial Design.  The foundation of this high-rise 
building is a Discrete Input module (proximity switches), and Motor Controllers.  A control block is added to 
complete this Elevator module which is the foundation for the next level of the high-rise, which consists of this 
Elevator module plus three Conveyor modules and two Offloader modules.  This container handler system could 
then itself be used as a foundation for a bigger plant, and so on and so forth.  Again, since everything is self-
contained and self-reliant, designs do not get bogged down with greater and greater complexity as the design 
grows.  The complexity is addressed at each level, so there is no limit to the number of levels that can be built.  

Again, with OOIP just drop in the objects, wire them up, configure them, and be done.  There is no secondary work 
required such as adding the object’s tags to an Alarm Manager, or a Persistence Manager, or global variable lists, or 
scaling lists, or filtering lists.  Just drop it in and use it.  Need another one?  Just drop in a second one and use it.  
Need 100?  Just drop them in and use them.  Getting the idea yet? 

This approach was not necessary when PLC programs were small (a split-level ranch).  But, as the power of PLCs 
grows and the application for PLCs become more complex and demanding, OOIP provides a way to manage that 
complexity to allow unlimited growth (a 200-story skyscraper).   

Each of the levels of this design are explained in more detail on the next several pages.  
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This graphic details the top-level of the material handling system described on the previous page.  This is a block-
diagram of the plant.  (Or this could be a block diagram of a section of the plant, since each level can stand on its 
own – there is no way to know (except in CODESYS the top-level is a Program and all other levels are Function 
Blocks.))  

This level of the plant consists of an Elevator, three Conveyors, and two Offloaders.  Each of these are completely 
self-contained, self-reliant objects.  Notice that the CFC toolbox “Input” items are used as a way of showing the 
internal status of these modules at this level (these are not part of the module; they are CFC Inputs that are butted 
up against the module’s box).  Notice these use relative path names to reach down in and grab variables further 
down in the hierarchy.  Also note that these objects are declared as VAR_INPUT.  Declaring these instances in this 
way allows the simulator to access to the internal variables of the instance that would otherwise not be accessible 
from this level (Note 1). 

Because this is CFC, the underlying Function Block can be opened by double-clicking on the box.  When online, the 
underlying instance can also be opened by double-clicking on the box.  This will open the editor for that particular 
instance showing the values of the variables for that particular instance. 

Notice that physical I/O has yet to be mentioned in this book.  In fact, it won’t be mentioned for several more 
chapters.  In traditional PLC programming, the effort begins with the I/O tag list and proceeds from there.  In OOIP 
programming, the effort begins by determining and assembling the required functionality.  Mapping the physical 
I/O into that functionality is one of the last steps.  In that way, when similar functionality is required in a different 
plant or piece of equipment, it’s a simple matter to update the mapping with the new I/O.  No rewriting the global 
variable list and all the task-based services on which it relies.  Reusability is maximized.   

Note 1: At one time this syntax could be used to access variables in instances that are declared VAR: 
(ADR(E1.Elevator_Seq.InConvStatus))^ 

Unfortunately, that wasn’t working as of SP16.  
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Double-clicking on the 
ElevatorModule block opens the 
editor for the next level of the 
design – the Elevator’s Control and 
Equipment Diagram (C&E).  A C&E 
consists of Input objects on the left 
(proximity sensors, in this case), 
Output objects on the right (motor 
controllers, in this case), and a 
Control Block in the middle.   

Notice that the outputs of the 
input objects drive the inputs to 
the control block (the 

ElevLoadPX.OUT output drives the Elevator_Seq.ElevatorLoadedPE input).  And similarly, the control block outputs 
drive the inputs to the output objects (the Elevator_Seq.Pusher_On output drives the 
PusherMotor.Start_Command input). 

Each of these objects are totally self-contained.  
Physical I/O is mapped to these Input and 
Output objects as the very last step in the design 
process.  This is covered in the I/O chapter. 

Double-clicking on the Control block opens the 
SFC editor showing how the Elevator module is 
controlled.  Since this is a discrete sequential 
process, SFC is the best language for this job.  
The outputs of the proximity switches drive the 
Transitions, and the assignments in the Entry 
Actions drive the motor controller inputs.   

Going back to the C&E and double-clicking on an 
FVNR_Motor shows the design of the motor controller.  
Since this is completely discrete logic consisting of timers 
and relays, it makes sense to build this in LD.  However, 
this does have seal-in contacts, so it is actually a State 
Machine and perhaps would be better built in SFC.   

The physical I/O will be mapped to Starter_Aux and 
Energize_Starter (its coil is on a lower rung that isn’t 
visible in this screen shot).  These will be mapped as 
described in the I/O chapter.  (Unfortunately, this design 

was created without using the naming convention described on the next page.  It would have been much clearer if 
those had been named Starter_Aux_FI and Energize_Starter_FO.)   
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In OOIP (and 
programming 
in general), 
Function Block 
VAR_INPUTS 
and 
VAR_OUTPUTs 
are connected 
to several 
different types 
of sources and 
destinations.  
Sometimes it 
become 
confusing 
exactly which 
I/O is intended 
for which 
source or 
destination.  A 

naming convention is extremely helpful to address this issue.  This author prefers this naming convention for 
VAR_INPUTs and VAR_OUTPUTs: 

- *._FI and *._FO: for physical inputs from field devices and outputs to field devices.  
- *_PI and *_PO: these are the interconnections within the program.  _POs from one block typically connect to 

the *_PIs of the next, and vice versa.   
- *_VI and *_VO: primarily intended for connections to the Visualization or HMI.  
- *_CI: Configuration Inputs for adjusting the behavior of the object to meet the requirements of the 

application.  These are usually initialized with one of the techniques described in the POUs chapter. 

Where * represents the normal descriptive variable name.   

Note: Some users prefer to place the naming convention in front of the variable so when IntelliSense or Input Assist 
display variable names in alphabetical order, the variables are ordered by intended type of source or destination.   

Using this or a similar naming convention makes it much easier to find the correct variable and much less likely to 
use the wrong variable.  For instance, when mapping the Analog Input object to the physical analog sensor in this 
example, one would look for a variable ending in _FI (Input_FI in this case).  Or, when looking for a tag for the 
Visualization to indicate that an input is out of range, one would look for a variable ending in VO (Clamped_VO in 
this case).  Or, when looking to connect the analog output to the next programming object that needs that signal, 
look for a variable ending in _PO (Output_PO or SmoothedOutput_PO in this case).   

That having been said, there are exceptions to every rule.  For instance, perhaps there is a reason the program 
needs to know if the input was out of range, so it would be necessary to use Clamped_VO as a program output.  
Exceptions can and will occur, but this covers the vast majority of cases and clears up the vast majority of possible 
errors and confusion.  
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This author finds it far 
better to build a large 
design from a hierarchical 
arrangement of small and 
manageable blocks, than 
to build one large flat 
design.  A well-designed 
hierarchical design 
consisting of logically 
partitioned blocks is 
much easier to 
understand, debug, and 
validate than one large 
flat design.  This author 
typically limits the size of 
a building block to one 
page (or two pages with 

the ancillary code relegated to page 2).   

As we discussed in the Abstraction graphic earlier, try to partition your design into Function Blocks that have the 
level of detail that is appropriate for that position in the hierarchy.  Just like the engine, the top-level is made up of 
the major components (alternator, starter, block, etc.).  The next level down would be the pistons, cam shaft, etc.  
Continuing down the pistons would be the rings.  Partition your control designs in exactly the same way.  The 
engineer taking over your code will greatly appreciate it (as will you in two years if your memory is as bad as this 
author’s).  At every level, think what is important to the future user of this code to understand at this level of the 
design.  If it has more detail than is necessary at that level, move the functionality into a Function Block with a 
descriptive name, and replace the code with that Function Block instance. 

As a point of illustration as to why the concept of small building block and consistent level-of-detail is important, 
one only needs to open a typical Ladder Logic design.  Most LD design consists of dozens or hundreds of pages of 
flat code, intermingling detailed design with high-level calls to other Function Blocks.  This violates both the one-
page building-block rule and the separation-of-detail rule.  It is much better to partition the design into multiple 
layers, with the higher levels showing the overall functionality and interrelationships (the Block Diagram), and lower 
levels showing the detailed implementation.   

Other areas that could be argued violate the separation-of-detail rule are Hungarian notation and namespace 
prefixes.  Typically, the data type of a variable is only important when it is being declared.  Some would argue that 
prefixing the variable with its data type introduces unnecessary clutter to the code which makes the code more 
difficult to read and understand.  That detail is better left to a tooltip.  Likewise, the library from which an object is 
obtained is again usually only important when the object is being chosen.  Prefixing the object with its library of 
origin usually represents unnecessary clutter which makes the code difficult to read and understand.  IEC 61131-3 
and CODESYS desperately need a way to open namespaces for each POU so the library of origin can be handled in 
the declaration area where that level of detail is important, not in every line of code where an element of the 
library is used. 

This concept will be revisited several times over the next few chapters (along with additional suggestions where 
CODESYS could enhance the IDE help their customers use these best practices).    
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To fully realize the reusability benefit of OOIP, I/O 
mapping, and Parameters cannot be hard-coded into 
the instantiation of any object as they are in older 
programming techniques.  This will be illustrated on 
the next several pages. 

 

 

 

This figure shows how Abstraction, 
Composition, and Interfaces can be 
used to build a hierarchical process 
plant.  At the top level, the Plant 
Program instantiates two Reactor 
objects, each of which have 
abstracted away the complexity of 
two Auger objects which themselves 
instantiate Motor and Shaft Encoder 
objects.  The Shaft Encoder and Motor 
objects encapsulate all the 
functionality required to receive 
pulses from the shaft encoder and 
control the motor.   

Thanks to Abstraction, our only 
concern at any one level of the 

hierarchy are the interfaces to the next level.  For instance, the Variable Speed Motor in the Auger has an interface 
to set the speed of the motor.  At the Auger level, we have no need to know or deal with any of the underlying 
complexity of the motor, such as determining if the motor is responding or generating alarms.  The Variable Speed 
Motor is self-contained and self-reliant and takes care of its own error conditions and alarming. 

Unfortunately, the traditional technique of hard-coding I/O and configurations is fundamentally incompatible with 
OOIP.  For instance, in this example we have a Plant which has two Reactors, each of which have two Augers, all 
four of which have Shaft-Encoder interfaces which need a physical discrete input for the pulses from the physical 
shaft encoder (Pulse_FI) and four configurations for the amount of material that is moved per pulse of the shaft-
encoder (PulsePerLiter_CI).  If the physical input of the Auger were hard-coded to a global variable, all four augurs 
would be hard coded to that single input.  The Auger is not reusable.  Same problem with the configuration.  If that 
is hard coded, then the Augur could only be used with augers of the same diameter, pitch, and encoder.  The only 
solution would be to make four copies of the Auger, hard code the I/O global variable and the configuration into 
each of the four copies, make two copies of the Reactor and hard code two each of the Augers into each copy, and 
hard code those two Reactor variations into the Plant.  This is a laborious process, duplicate code is rampant, 
nothing is reusable, and there are huge opportunities to introduce errors in the code.   
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Earlier, we drew the analogy that the older task-based approach is like a centralized government, where the newer 
object-based approach is a society where individuals take care of themselves.  Now, you might be thinking: “Even 
the most ardent libertarian agrees there is a need for some level of government.” and “Not all 1964 Ford Mustangs 
are identical.  They have different features and options.  How are these handled in OOIP?” and “How does global 
I/O memory work with OOIP?”  These are all very good questions.  The first issue is addressed with Central Services, 
the second with Configuration Parameters, and the third with Full-Path I/O Mapping as described below. 

  

CODESYS addresses the I/O 
mapping with a remarkable feature 
they designed into the I/O 
mapping tool.  In traditional 
programming, a global variable 
would be placed in the I/O map, 
and then that global variable 
would be hard-coded into the 
program where it is used.  With 
OOIP, instead of mapping to a 
global variable, the I/O is mapped 
directly to the applicable pin on 
the instance of the object which 
uses that physical I/O using full-
path-name.  A Full Path Name is 
the dot-separated combination of 
the Program name, followed by all 

the intervening instance names, and ending with the variable name.   

In this example, the first discrete I/O point is mapped to the PULSE_FI input in ShaftEncoder SE1, in Auger A1, in 
Reactor R1, in the Plant Program, in the App Application.  So, its full-path-name is App.Plant.R1.A1.SE1.Pulse_FI.  
The second discrete input is connected to the second auger, so its full path name is App.Plant.R1.A2.SE1.Pulse_FI.  
The third and fourth discrete inputs are mapped to the same augers except in the second reactor (R2).  Because of 
this I/O mapping technique, the Auger is now reusable.  Notice, the naming convention (*_FI) to make it easier to 
determine where to connect the physical I/O. 

Unfortunately, CODESYS doesn’t offer something similar for setting configurations.  Fortunately, ControlSphere has 
created the Central Configuration and Persistence Service library (CCS) to address this issue.  The CCS library 
automatically creates a spreadsheet which is organized by FB type and has a row for each FB instance and a column 
for each configuration input for that FB.  The CCS library creates this CSV file containing the default values for the 
configuration inputs.  These values may be changed and the CSV file read back in to apply those changes. 

In this example, each Shaft Encoder needs to know the number of pulses per liter of material.  The CCS library 
writes a CSV file which is grouped by Function Block type (ShaftEncoder), a header-line showing the names of all the 
configurable inputs to the ShaftEncoder (PulsePerLiter_CI), a row containing a full-path-name to each Shaft Encoder 
instance (App.Plant.R1.A1.SE1, etc.), and the default values for each configurable input in each instance of the 
ShaftEncoder.  The user can then change the default values to that which is appropriate for each instance (1000, 
2000, 3000, and 4000 in this example).  Then, the CSV file can then be read by the controller and the new values 
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will be copied in their appropriate variables.  This read operation can be performed automatically on startup, or can 
be commanded by the control or HMI code.  

If the Application includes Visualization which allows the operator to set configurations, that Visualization page 
would change the configuration variable values and then write the CSV file so those changes become permanent 
(will survive a power-cycle, equipment replacement, or even movement to a new plant or piece of equipment).   

The OOP chapter will show how additional OOP techniques are used to implement CCS library. 

 

Here is an example of a real configuration file compliments of Marine Hydraulics.  Notice the CSV file is grouped by 
FB type (CalcCylOIlOLoads, PumpControlFB, KiteRetieverSystem, SADECylinderSystemsFB, etc.).  Notice within each 
group there is a row for each instance of that FB.  Also, notice there is a header row at the beginning of each 
section containing the names of each of the configuration inputs, with the values of each configuration parameter 
for each instance in cells below the header.  

 Marine Hydraulics has a mixture of configurations that are fixed for each boat, and some configurations which can 
be changed by the operator through a Visualization.  The programmer codes the boat-specific configurations into 
the CSV file which is read on startup.  The Visualization writes the configuration file after it makes any changes to 
the operator-configurations so that those changes become permanent.   

This shows the Power of Object Oriented Industrial Programming.  Declare instance of your reusable Function 
Blocks, create a Configuration CSV file with all the default values, update those values as appropriate, read the file 
back into the project, and start your plant or equipment.    
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Taking this concept one step further – 
if one thinks about it, the I/O mapping 
is just another configuration.  It is 
something of interest to each instance 
and should be configured along with all 
the other configuration inputs for that 
instance.  It’s just another column in 
the configuration spreadsheet (maybe 
two columns if the I/O itself is 
configurable, like as an Input or an 
Output, or Analog or Discrete, etc.).  All 
that information is unique to each 
instance and should be part of that 
instance’s configuration. 

In this scenario, an I/O module would be a configurable reusable Function Block just like every other object we’ve 
talked about in this chapter.  It would have its own configuration for items like its name, CAN address, and such.  It 
would offer up its name and its I/O points to an I/O Mapping Central Service which would then coordinate with 
each equipment instance to make the connections specified in the equipment’s CSV configuration.   

Alternatively, the I/O mapping could be specified in the CSV configuration for the I/O module FB instance. 

In either scenario, the CODESY I/O wouldn't be used at all.  This gives the added benefit that I/O could now be 
updated in an Online Change!  Follow this link for a demo showing how this is done: https://ooip-
foundation.proboards.com/thread/9/configurable-mapping-allows-online-change 

 

In the future, IDE enhancements could be made to 
integrate the features of the Central Configuration 
Service into the IDE.  This could include additional 
flags that designate a variable as a Parameter/Retain 
Configuration or an I/O Configuration.  Automation 
could be included to replace the Visualization used to 
read and write the configuration files, and 
automation could be added to transfer the 
configuration file back and forth between the PC (for 
editing) and the PLC (for transferring the 
configuration variable values to the runtime). It could 

also open the file directly in Excel. 

Note that functionality similar to the Central Configuration Services could be used to provide both a Central Alarm 
Service and a Central I/O Service.  In addition to simplifying the I/O mapping process, the Central I/O service would 
provide the ability to reconfigure I/O in an Online Change (which is currently not possible and a significant issue 
using CODESYS in applications which cannot be shut down for modification).  These are examples of functionality 
which is handled as an external manual post process in traditional PLC programming that could instead be built into 
self-contained and self-reliant Function Blocks.    
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To simulate, or not to simulate: that is the 
question.  ‘Tis nobler (or at least more 
efficient) to spend the time to create 
simulation models and test the design prior to 
deployment, or to spend the time testing the 
design during deployment?   

While I can’t speak for Shakespeare, I can say 
that in my 40-year career ‘tis always more 
efficient to perfect the design prior to 
deployment.  I’ve successfully applied 
simulation to a wide variety of applications 

including many different types of industrial controls systems, electronic PCB circuit design, and FPGA design.  In my 
experience, simulation typically pays for itself many times over due to: 

- the insight simulation models provide which can’t possibly be measured or observed in the actual plant or 
equipment, 

- the ability to quickly determine the merits of alternate approaches and choose the option with the lowest 
overall cost or the best overall performance,  

- the ability to test emergency and unusual conditions which are impossible or dangerous to do with the real 
equipment, 

- the high level of confidence in the design which provides the corresponding confidence that any issues 
encountered during commissioning must be in the plant or equipment, 

- the ability to perfect the control in parallel to the construction of the plant or equipment (and avoid the 
inevitable pressure from the anxious project manager looking for those of us who reside at the end of the 
critical path to make up for delays earlier in the project).   

This return on investment becomes even greater with modern development and simulation environments which 
include Object Oriented Industrial Programming (OOIP) tools to accelerate development, and advanced debugging 
features which accelerate the time-to-insight.  

The characteristics of a good Industrial Controls (IC) simulation environment look very similar to that of a good IC 
development environment: 

- Versatile and powerful programming languages 
- Full featured language editors 
- Full suite of debugging tools including: 

٠ Code and data breakpoints 
٠ Single-stepping, step-in, step-out, etc. 
٠ Live Mode (to show instantaneous variable values, not just end of cycle values)  
٠ Write and Force variables, and move the execution point 
٠ Virtual digital oscilloscope which samples at the controller cycle time 

- Built-in HMI for creating test control panels 
- A complete controller runtime which runs as a service on the development computer 
- Support for Object Oriented Industrial Programming (OOIP) 

Fortunately, the CODESYS IDE and the CODESYS ControlWin soft PLC offer all these features and is just as good as a 
simulation/verification environment as it is a development environment.  With such an environment, creating the 
simulation code is as easy as creating the original code.  The next few pages will show how this is accomplished 
using the CODESYS IDE.    
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The 
simulation 
code often 
mirrors the 
control code.  
Here is the 
simulation 
code for the 
container 
handling 
system 
described 
earlier in this 
chapter.  It 
contains the 
same blocks 
as the control 
code, except 
this is using 
the 
simulation 

version of each system block (notice the *_Sim in the name).  (This diagram was actually a copy of the actual 
system-level diagram with the names changed.) 

Notice that this author prefers the simulation code to be totally separate from the control code.  It’s stored in its 
own separate folder and it has its own separate Task.  The Task is usually set to run much faster than control code, 
because the simulator is usually simulating something that is running in real-time.  It’s advisable to select a cycle 
time that is not an even sub-multiple of the control cycle time, so there is no chance some sort of synchronizing or 
aliasing could conceal a control issue.  (For instance, selecting 3ms simulation for a 20ms control cycle.) 

With the control code as a separate entity in its own folder, it’s a simple matter to exclude or include the folder in 
the build to add or remove the simulation code.  This way, when the simulation is not being used, it is completely 
out of the way, it takes no controller resources, nor could it possibly ever interfere with the control code.   

Some engineers prefer to place the simulation code in the control code and have a global variable to enable and 
disable the simulator.  This often reduces or eliminates the I/O mapping step as described on the next page.  But it 
does use controller resources after the control code has been released to the field, and there is always the chance 
the code could cause issues.  There is no right answer with respect to the decision of where to place the simulation 
code. 

As was mentioned in the debugging chapter, one issue that occurs with simulation is what to do with the 
configured physical I/O when simulating.  This isn’t a problem when using Simulation built into the IDE because 
Simulation ignores any configured I/O.  But in many cases Simulation has limitations which force the use of 
ControlWin (which does not ignore I/O).  Some hardware vendors provide a version of ControlWin which accepts 
and ignores the I/O from that vendor.  That is the best solution when it is offered.  Without that, the only way to 
use ControlWin to simulate is to delete the I/O and change the device to ControlWin, then change the device back 
to the actual device and paste the I/O back into the tree to run on the actual hardware with physical I/O.   
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Pushing into the 
OffloadingModule_SIM 
shows that the 
simulator for this 
module consists of two 
Motor simulators, a 
Conveyor simulator, and 
a Pusher simulator.  
Notice that the inputs to 
the simulators are the 
physical outputs of the 
control code.  The 
inputs on the left are 
full-path names to the 
physical outputs in the 
control code, and the 

simulator outputs on the right are the full path names to the control code inputs.  These are the same full path 
names that will be used when mapping the physical I/O to the control code.   

(Unfortunately, the naming convention was not used in this design.  If it had been, the names on the left would be 
appended with _FO and the ones on the right would be appended with “_FI”.) 

The Motor_SIM accepts the Energize_Starter command and after Starting_Time has expired it sets the Starter_Aux 
to true.  Starting_Time can be changed by the simulator test sequence code to test the control code response when 
the motor starts slower than expected or fails to start.  These are a few rungs of LD. 

The Conveyor_Sim records the time when the LoadingItem transitions to true, then knowing the length and speed 
of the conveyor, activates the PhotoEye output when each item reaches the end of the conveyor.  This requires a 
dozen or so lines of ST code.   

The Pusher_SIM cycles between activating the PusherExtended and PusherRetracted outputs to simulate an arm on 
the end of a rotating cam with proximity switches on the two extremes.  Another few lines of code. 

In total, the entire Offloader simulator is a couple dozen or so lines of LD and ST code.  A very small price to pay for 
the confidence that the design is complete and correct before it is deployed to the field.   

Be aware:  To promote good coding techniques, variables that are declared as VAR are not accessible outside the 
POU in which they are declared.  Similarly, VAR_INPUTs and VAR_OUTPUTs declared inside a Function Block whose 
instance is declared as a VAR are not accessible outside the POU in which the Function Block instance is declared.  
CODESYS provides special access to the CODESY I/O Mapping tool (as well as to Visualization, Recipes, Trace, and 
such) in order to be able to reach into variables inside Function Blocks that are declared as a VAR.  Unfortunately, 
your user-level simulator code will not have that same type of special access.   

To allow your simulator code to “reach-into” and connect to VAR_INPUTs and VAR_OUTPUTs in instances of 
Function Blocks, those instances must be declared as VAR_INPUT.  (For instance, in this example the 
ConveyorMotor Function Block instance must have been declared as VAR_INPUT.)  (At one time it was possible to 
use this syntax to allow a simulator to have the same access as I/O mapping and Visualization:  
“(ADR(VarToReach))^” (where VarToReach is a VAR_INPUT or VAR_OUTPUT inside an instance of a Function Block 
that is declared VAR).  But, as of this writing, that trick no longer works.  Hopefully, it will again someday.) 
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A Trace can be used to monitor the 
results of the simulation.  And/or the 
simulation models themselves can 
monitor for the expected behavior in a 
fully automated test system.  In this 
case, the traces show the handshaking 
between each piece of equipment, the 
outputs of the proximity sensors, the 
inputs to the motors, and the status of 
each conveyor simulator.   

 

 

 

 

The simulation can be 
extended to include a full 
self-test of all the corner-
cases and unusual conditions 
of the control code.  This is 
extremely helpful for future 
developers to test their 
modifications and verify that 
none of the existing 
operations were disturbed by 
the modifications.  

In this example, when 
RunFullOut_NotRunTest is 
FALSE, the system enters the 
self-test mode.  In this test, 
the sequence on the right is 

executed which consists of multiple pairs of steps which first execute a test operation followed by the test 
evaluation.  As each test pair is completed, the results are outputted to the status signals on the lower-right side of 
the SelfTest block.    
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Tool vendors are beginning to 
make the benefits of OOIP 
available to Controls Engineers.  
To leverage those benefits, 
Controls Engineers need only 
master two key OOP concepts: 
Encapsulation and Composition.  
With that knowledge, controls 
engineers can encapsulate the 
functionality of physical objects 
into matching control objects, and 
then instantiate those objects to 
create a control design which 
mirrors the plant or machine 

design.  Not only does OOIP make the design easy to build, it also makes the design easy to troubleshoot for plant 
technicians and easy to maintain for future controls engineers.  Just as the best of other general software 
advancements have been adopted into the industrial controls world, Object Oriented Industrial Programming is 
following that same pattern.  OOIP is clearly the future of Controls Engineering. 

How do you know if your control system supports OOIP?  Look for these capabilities: 
- A means to create self-contained control objects which correspond to matching plant objects and carry out all 

the functionality required for that plant object such as alarming, auditing, physical I/O, HMI I/O, scaling, 
control, etc.  

- A graphical editor allowing an unlimited number of instances of objects to be declared, instances of objects to 
be interconnected in arbitrary fashions, and objects to instantiate other objects into a hierarchy of arbitrary 
depth and complexity.  During runtime, the editor should allow for simple navigation of the hierarchy such as 
double-clicking on an instance of an object to descend into the project hierarchy and to navigate back.   

- The ability to debug individual instances of objects during runtime, including: setting breakpoints within 
individual instances, single-stepping into individual instances, and viewing/changing the private variables of an 
instance of an object.  

- A means for instances of the same objects to be differentiated by assigning unique values to the instance’s 
configuration inputs anywhere the instance may be in the project hierarchy.  Preferably, these configuration 
values are sourced from a CSV/Excel file, SQL database, or via OPC UA. There must also be a way to search on 
the values of these configuration variables during runtime (for instance, to search on an ISA tag name 
configuration). 

- The ability to map physical I/O to any variable in any instance anywhere in the project hierarchy (including 
mapping a physical input point to multiple instances).  Composite I/O such as from a fieldbus device must be 
able to be mapped to individual variables, or to one or more data structure variables anywhere in the project 
hierarchy.  The tool must provide a way to trace the path of a signal from its input, through the logic, and to 
the outputs it drives (likewise in reverse from the physical output back through the logic to the physical inputs 
which influence that output).   

- The capability to build hierarchical HMI objects which match the hierarchical control objects and the ability to 
interconnect the two objects (and their potentially thousands of underlying interconnections) via the top-level 
object’s instance name.  

- The ability to print a “flattened” version of the hierarchical design showing the interconnections between the 
object instances and the unique configuration values on each instance. 

- The ability to implement Inheritance, Methods, Polymorphism, and Interfaces can be helpful.   
- An active user community and lively forum where open-source Plant Objects and advice can be freely shared. 


